

SOEENTIFITTEOT.NING.

CUNVE TRABEE and AIE SELICONDOUTORTISTER
 ---ー-------------

2WV MODEL 53000

\square
\square
\square

5300C ATE/CURVE TRACER

The Model 5300C ATE/CURVE TRACER provides all the functions of a full feature high speed ATE system plus CURVE TRACER capability.
Curves are generated using high speed ATE test steps to build the curve point by point. Precision data points are generated quickly and accurately. Data increments are programmable in linear or logarithmic steps. Curves are generated rapidly. Features include:

- Wide Selection of Available Curves
- High speed data capture ATE.
- RDSON to 1u Ω Resolution
- Optional Prober/Handler Interface
- Programmable Relay Drivers
- Auto Calibration
- Self-Test
- Programmable Data Point Increments on curves
- Increments can be Linear or Logarithmic
- Programmable Off-Time to Minimize Heating
- Load Curve Data Directly to Excel®
- Load ATE Data Directly to Excel®
- Run up to 10 Curve Programs in Sequence with data loaded to Excel® Automatically
- Logarithmic Curves
- No Patch Cords relay matrix makes all connections
- No SMU Set-Up-Selection; Completely Automatic
- GaN (HEMT) SiC Enhancement / Depletion Device

DEVIICES TESTED

DEVICE FAMILIES

5 PIN MODULE I
5 PIN MODULE II
POS RAIL GATED OVP
NEG RAIL GATED OVP

Mosfet

IGBT

JFET Optocoupler

Single Gated OVP

Mulitple Devices

Some Devices require Adaptors.

ZENER

VF IR BVZ ZZ	

IGBT N/P CHANNEL

OPTOCOUPLER NPN/PNP

DIODE

JFET N/P CHANNEL

VGSOFF	
IDSS	
BVDGO	$=$
IGSS	
IDGO	
IDOFF	
BVGSS	
VDSON	
VGSON	
IDON	
RDSON	

TRANSISTOR NPN/PNP

SSOVP

VCLAMP+	
VCLAMP-	$=$
IBO+	
IBO-	
VBO+	
VBO-	
IH+	
IH-	
VT+	
VT-	
VZ+	
VZ-	
ID+	
ID-	
KELVIN	

TRIAC

IGT I	Δ
IGT II	
IGT III	
IGT IV	
VGT I	
VGT II	
VGT III	
VGT IV	
IL+	
IL-	
IH+	
IH-	
VT+	
VT-	
VD+	
VD-	
IDRM	
IRRM	
VDRM	
VRRM	

NOT SHOWN

SCR	Quadrac®	5 Pin Modules
Varistor	Sidac	Gated OVP Diode/MOV

Varistor
Sidac
5 Pin Modules TVS Diode/MOV Gated OVP

Enter Parameters

Test Sketch

Creating and editing test programs for the STI 5300C is both easy and intuitive. Each test program contains a series of test steps (these steps can be actual device tests or calculations), bin/sort plan, and if required, relay plan. Test steps are added or edited with a single or double mouse click. A device test window or calculation window is opened. In the device test window the limit parameter value is entered along with, if applicable, other bias voltages or currents (one of the biases can be a calculation), load resistors, etc. In the calculation window the calculation limit is entered along with the name and units to be used in displaying the results and then the actual calculation which may reference any test result from a previously entered device test. 96 test steps max.

BINNING / SORTING

By default all programmed test steps are set to pass on SORT/BIN 1. Each test step may be set for pass, fail or do not care for each sort. Each sort may be set to any of the logical bins. Binning and sorting can be as simple as running all of the programmed test steps and then finding the first qualifying sort or as complex as branching on the first non-qualifying test to the next valid sort. In this more complex mode it is quite possible that only a subset of the programmed tests will be run on a given device and that all devices tested may not run the same subset of test steps 99 sorts max.

EXTERNAL RELAYS FOUR PLUS OPTIONAL FIFTEEN

Four to fifteen (depending upon options supplied with the STI tester) relay drivers can be assigned to any programmed test step. These relay drivers can be used to provide external loads or connections for a given device test.

TEST PROGRAM

2KV ATE

LOGGED DATA

DATA TO EXCEL ®

CURVES - EXAMPLES

Mosfet N/P Channel

ID vs. VDS (at range of VGS)
ID vs. VGS (at range of VDS)
IS vs. VSD
RDS vs. VGS (at fixed ID)
RDS vs. ID (at several VGS)
IDSS vs. VDS (Reverse Bias Selectable)
VGSTH vs. ID
IGSS vs. VGS

Transistor NPN / PNP

HFE vs. IC
$\operatorname{BVCE}(0, S, R, V)$ vs. IC
BVEBO vs. IE
ICBO vs. VCBO
VCE(SAT) vs. IC (at fixed IC/IB ratio)
$\operatorname{VCE}(S A T)$ vs. IB (at range of IC)
VBE(SAT) vs. IC (at fixed IC/IB ratio)
VBE(ON) vs. IC (at fixed VCE)
IC vs. VCE (at range of IB)(Curve Tracer only)
IEBO vs. VEB
ICEO vs. VCE

IGBT N/P Channel

IC vs. VCE (at range of VGE)
IC vs. VGE (at range of VCE)
ICES vs. VCE
IF vs. VF
VCE vs. VGE

Diode

IF vs. VF
IR vs. VR

Zener

IF vs. VF
IZ vs. BVZ

TRIAC

IT vs. VT+ (at fixed IG and RGK open)
IT vs. VT- (at fixed IG and RGK open)

SCR

IT vs. VTM (at fixed IG and RGK open)

SSOVP

IT vs. VT+ (at fixed IBO)
IT vs VT- (at fixed IBO)

SIDAC

IT vs. VT+ (at fixed IBO)
IT vs VT- (at fixed IBO)

DIAC

ID vs. VF+
ID vs. VF-
Regulator Positive
Electronic Load vs. VOUT (at fixed IMAX)

Regulator Negative

Electronic Load vs. VOUT (at fixed IMAX)

JFET N/P Channel

ID(OFF) vs. VDS (at range of VGS)
ID(OFF) vs. VGS (Reverse Bias) (at fixed VDS)
ID(ON) vs. VDS (at range of VGS)
ID(ON) vs. VGS (Reverse Bias) (at fixed VDS)

Other Curves

V vs. I Quadrants I and III
I vs. V Quadrants I and III

NMOS RDSON vs VGS (Figure 1) Depletion Mode Device

NPN hFE vs IC (Figure 2)

N JFET, IDON vs VDS (Figure 3)

CURVE SUITE (Figure 4)

NPN VCESAT vs IC, IC/IB Fixed Ratio
(Figure 5)
NPN IC vs VCE (Figure 6)

HFE vs IL

IDON vs VDS

CURVE SUITE

VCESAT vs IC

IC vs VCE

CURVE DATA TOEXCEL®

Notes:

MOSFET N-CHANNEL IDON vs VDS									
VGS $=2.400 \mathrm{~V}$		$\mathrm{VGS}=2.450 \mathrm{~V}$		VGS $=2.500 \mathrm{~V}$		VGS $=2.550 \mathrm{~V}$		VGS $=2.599 \mathrm{~V}$	
IDON	VDS								
0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
239.0E-03	10.000E-03	299.1E-03	10.000E-03	$353.9 \mathrm{E}-03$	10.000E-03	392.6E-03	10.000E-03	454.8E-03	10.000E-03
1.191	$60.00 \mathrm{E}-03$	1.857	$60.00 \mathrm{E}-03$	2.713	$60.00 \mathrm{E}-03$	3.836	$60.00 \mathrm{E}-03$	5.163	$60.00 \mathrm{E}-03$
1.469	$110.0 \mathrm{E}-03$	2.331	$110.0 \mathrm{E}-03$	3.570	$110.0 \mathrm{E}-03$	5.224	$110.0 \mathrm{E}-03$	7.308	$110.0 \mathrm{E}-03$
1.580	$160.0 \mathrm{E}-03$	2.548	$160.0 \mathrm{E}-03$	3.942	$160.0 \mathrm{E}-03$	5.825	$160.0 \mathrm{E}-03$	8.349	$160.0 \mathrm{E}-03$
1.640	$210.0 \mathrm{E}-03$	2.645	$210.0 \mathrm{E}-03$	4.119	$210.0 \mathrm{E}-03$	6.185	$210.0 \mathrm{E}-03$	8.898	$210.0 \mathrm{E}-03$
1.682	$260.0 \mathrm{E}-03$	2.725	260.0E-03	4.260	$260.0 \mathrm{E}-03$	6.393	260.0E-03	9.234	260.0E-03
1.713	$310.0 \mathrm{E}-03$	2.777	$310.0 \mathrm{E}-03$	4.342	$310.0 \mathrm{E}-03$	6.533	310.0E-03	9.466	$310.0 \mathrm{E}-03$
1.734	$360.0 \mathrm{E}-03$	2.825	$360.0 \mathrm{E}-03$	4.412	360.0E-03	6.649	$360.0 \mathrm{E}-03$	9.643	360.0E-03
1.754	$410.0 \mathrm{E}-03$	2.856	$410.0 \mathrm{E}-03$	4.476	$410.0 \mathrm{E}-03$	6.738	$410.0 \mathrm{E}-03$	9.771	$410.0 \mathrm{E}-03$
1.774	$460.0 \mathrm{E}-03$	2.883	$460.0 \mathrm{E}-03$	4.516	$460.0 \mathrm{E}-03$	6.814	$460.0 \mathrm{E}-03$	9.893	$460.0 \mathrm{E}-03$
1.777	$500.0 \mathrm{E}-03$	2.902	$500.0 \mathrm{E}-03$	4.547	$500.0 \mathrm{E}-03$	6.848	500.0E-03	9.963	$500.0 \mathrm{E}-03$
1.956	2.500	3.189	2.500	5.007	2.500	7.556	2.500	10.90	2.500
2.053	4.500	3.332	4.500	5.242	4.500	7.888	4.500		
2.133	6.500	3.463	6.500	5.447	6.500	8.242	6.500		
2.212	8.500	3.604	8.500	5.679	8.500	8.566	8.500		
2.270	10.00	3.695	10.00	5.807	10.00	8.764	10.00		

CURVE PROCRAMMNMG

Curve tracer programming is illustrated in Figure 7 below which shows entries for and IDON vs VDS N Chan MOSFET. IDON and VDS start and end points plus increment sizes are entered. VGS increments determine the number of IDON vs VDS sweeps.
Additional tabs provide user selectable features including sweep type, programmable relay drivers, and load to an Excel® file including graph and data points.
A number of graphing features are also included. The mouse can be used to zoom in on a specific area of the curve. Cursors can be moved on a completed curve to re-set start and stop limits to regenerate the curve in greater detail in an area of interest. Clicking on an axis will change the scale from linear to logarithmic. Clicking on a curve will show all data points on the curve.

Figure 7
Other curves are similarly programmed.

TEST SPECFIICATIONS

	ITST		SPHCTHTOATMOM		
	PARAMEIER	V RANGE	IRANGE	MAX RES.	AOCURARYY
LEAKAGE	IR, ICBO, ICEO/R/S/X, IDSS/X, IDOFF, IDRM, IRRM	2000V	2NA (20PA) ${ }^{3}$ to 50MA	0.1 NA (1PA) ${ }^{3}$	$\begin{gathered} 1 \%+2 \mathrm{NA}+20 \mathrm{PA} / \mathrm{V} \\ (1 \%+200 \mathrm{PA}+ \\ 2 \mathrm{PA} / \mathrm{V})^{3,4} \end{gathered}$
	Iebo, IGsSf, IGSSR, IGSS, IGKo, IR (OPTO)	. 10 V to $20 \mathrm{~V}(80 \mathrm{~V})^{2}$	2NA to 3A	0.1 NA	$\begin{gathered} 1 \%+2 \mathrm{NA}+20 \mathrm{PA} / \mathrm{V} \\ (1 \%+200 \mathrm{PA}+ \\ 2 \mathrm{PA} / \mathrm{V})^{3,4} \end{gathered}$
BREAKDOWN	TRANSISTOR BVCEO, BVCES (300 μ S Pulse above 10mA)	10 V to 500 V to 1400 V to 1600 V	$\begin{gathered} 100 \mu \mathrm{~A} \text { to } 999.9 \mathrm{MA} \\ \text { to } 100 \mathrm{MA} \\ \text { to 50MA } \end{gathered}$	1 MV	1\% + 100MV
	BVDSS, VD, BVCBO, BVCES (IGBT), VDRM, VRRM, VBB, BVR	. 10 V to 2000 V	100NA to 50MA	1 MV	1\% + 100MV
	BVZ	.10 V to 5.00 V to 9.999 V to 50.00 V to 1000 V BVZ Soak -50 V $0-50 \mathrm{~ms}$ $0-99 \mathrm{sec}$	$\begin{gathered} 10 \mu \mathrm{~A} \text { to } 49.9 \mathrm{~A} \\ \text { to } 25 \mathrm{~A} \\ \text { to } 9.99 \mathrm{~A} \\ \text { to } 100 \mathrm{MA} \\ \\ \text { to } 400 \mathrm{MA} \\ \text { to } 80 \mathrm{MA} \end{gathered}$	1 MV	0.4\% + 2 LSB
	BVEBO, BVGSS, BVGKO	. 10 V to $20 \mathrm{~V}(80 \mathrm{~V})^{5}$	100NA to 3A	1 MV	$1 \%+10 \mathrm{MV}$
VCESUS	VCEOSUS, VCERSUS, VCEVSUS	VCE: TO 1500V Inductive Kickback, 35 mH choke	IC: to 4A	0.5 V	$2 \%+0.5 \mathrm{~V}$
IMPEDANCE	$\begin{gathered} \mathrm{ZZ}(1 \mathrm{kHZ}) \\ 0.1 \Omega \text { to } 20 \mathrm{~K} \Omega \end{gathered}$	$\begin{gathered} 0.1 \mathrm{~V} \text { to } 200 \mathrm{~V} \text { DC } \\ \text { (measure } 50 \mu \mathrm{~V} \text { to } 300 \mathrm{mV} \mathrm{rms} \text {) } \end{gathered}$	$100 \mu \mathrm{~A}$ to 300 mA	$\begin{gathered} 0.001 \Omega \\ 1 \mu \mathrm{~V} \end{gathered}$	1\% + 1\% Range
GAIN	$\begin{gathered} \text { hFE (1 to 99,999) } \\ \text { CTR (. } 01 \text { to 99,999) } \\ \text { gFS, gFE } \end{gathered}$	$\begin{gathered} \text { VCE: } .10 \mathrm{~V} \text { to } 5.00 \mathrm{~V} \\ \text { to } 9.99 \mathrm{~V} \\ \text { to } 49.9 \mathrm{~V} \end{gathered}$ VDS, ID: Same as ON STATE VGS: 0.1 V to $20 \mathrm{~V}(80 \mathrm{~V})^{2}$	IE: $10 \mu \mathrm{~A}$ to $49.9 \mathrm{~A}(99.9 \mathrm{~A})$ derate to 25A (50A) derate to 9.99 A IF, IB: 100NA to (10A) $\Delta \mathrm{ID} / \Delta \mathrm{VGS}$ automatically computed	$\begin{aligned} & .01 \mathrm{hFE} \\ & .0001 \mathrm{CTR} \end{aligned}$	VCE: $1 \%+10 \mathrm{MV}$ IC: $1 \%+100 \mathrm{NA}$ IF, IB: $1 \%+5 N A$

Optional High Current:

-100A Option (${ }^{1}$)
-High Current Deck: 1200
-80V Low Source Option (${ }^{2}$)
-Low Current Deck (${ }^{3}$)
$\left.-(1 \%+2 N A+40 P A){ }^{4}\right)$ High Deck or Adapter

TEST

	PARAMEIER	VRANGE	IRANGE	MAXRES.	ACRURAEY
ON STATE	VCesat, Vbesat, Vbeon VF, VT VDSON, IDON, VGSON VGEON VF (Opto-Diode) RDSON	$\begin{aligned} & \text { VCE, VD, VF, VT: } 10 \mathrm{~V} \\ & \text { to } 5.00 \mathrm{~V} \\ & \text { to } 9.99 \mathrm{~V} \\ & \text { VGS, VGE, VBE, VF: } \\ & .10 \mathrm{~V} \text { to } 9.99 \mathrm{~V} \\ & 500 \mathrm{\mu} \Omega \text { to } 1 \mathrm{~K} \Omega \end{aligned}$	IE, VT, IF, ID: 10رA to 49.9A (99.9A) ${ }^{1}$ derate to 25A (50A) ${ }^{1}$ Ib, IF, IGT: 100NA to 10A VDS, ID: Same as ON STATE VGS: 0.1 V to $80 \mathrm{~V}^{2}$	$\begin{aligned} & 1 \mathrm{MV} \\ & 1 \mu \Omega \end{aligned}$	$\begin{gathered} \text { V: } 1 \%+ \\ \text { 10MV } \\ \text { IE, IF, ID, IT: } \\ \text { 1\% + 100NA } \\ \text { IB, IGT: 1\% + } \\ \text { 5NA } \\ \\ 4 \%+ \\ (0.5 \mathrm{MV} / \mathrm{ID}) \Omega \end{gathered}$
	VGSTH, VGETH	. 10 V to 49.9 V	ID: $100 \mu \mathrm{~A}$ to 3 A	1MV	1\% + 10MV
	VO (Regulator)	VO: 10 V to 80 V VIN: 10 V to 49.9 V Load: Resistive or Electronic	IO: 1MA to 5A	1MV	1\% + 10MV
	IIN (Regulator)	VIN: . 10 V to $80 \mathrm{~V}^{2}$ Load: RGK, 1K, 10K, EXT, OPEN, SHORT	IIN: 1 MA to 3A	10NA	1\% + 5NA
	VC	. 10 V to 49.9 V	10MA to 10A	1MV	$1 \%+10 \mathrm{MV}$
OFF	VGSOFF	Vo: .10V to 80V	ID: 100NA (20PA) to 3A VDS: . 10 V to 50 V	1MV	1\% + 10MV
TRIGGER	$\begin{gathered} \text { IGT } \\ \text { VGT } \\ \text { VOPER (Relay) } \end{gathered}$	VD: 5V to 49.9V VGT: 10 V to 80V 10 V to 50 V	IAK: to 3A IGT: 100 NA to 3 A RL: $12,30,100 \Omega$, EXT	$\begin{aligned} & \text { 10NA } \\ & \text { 1MV } \\ & .10 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1 \%+5 \mathrm{NA} \\ 1 \%+10 \mathrm{MV} \\ 1 \%+.10 \mathrm{~V} \end{gathered}$
HOLD	VRELEASE (Relay)	$\begin{gathered} \text { VD: } 5 \mathrm{~V} \text { to } 49.9 \mathrm{~V} \\ .10 \mathrm{~V} \text { to } 50 \mathrm{~V} \end{gathered}$	IH: 1.5 A IGT: 100NA to 3A RL: 12, $30,100 \Omega$, EXT (Initial IAK set by RL)	$\begin{aligned} & 1 \mu \mathrm{~A} \\ & .10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 1 \%+2 \mu \mathrm{~A} \\ & 1 \%+.10 \mathrm{~V} \end{aligned}$
LATCH	IL (ADP-506 required for exact value)	VD: 5V to 49.9V	IL: $100 \mu \mathrm{~A}$ to 3 A IgT: 100NA to 3A RL: 12, 30, 100 Ω, EXT	N/A	N/A
BREAKOVER	VBO, IBO (SSOVP) VBO, IBO (STS, DIAC) VBo, IBO (SIDAC) VS, IS (SBS, STS)	$\begin{gathered} 0.10 \text { to } 400 \mathrm{~V} \\ 0.10 \text { to } 80 \mathrm{~V} \\ 0.10 \text { to } 400 \mathrm{~V} \\ 0.10 \text { to } 80 \mathrm{~V} \end{gathered}$	10 mA to 900 mA $1 \mu \mathrm{~A}$ to $200 \mathrm{\mu A}$ $1 \mu \mathrm{~A}$ to 1 mA $1 \mu \mathrm{~A}$ to $200 \mathrm{\mu A}$	1 mV	$\begin{gathered} 1 \%+100 \mathrm{mV} \\ 1 \%+10 \mathrm{mV} \\ 1 \%+100 \mathrm{mV} \end{gathered}$

Accuracy specifications are in addition to ± 2 digit in readout. +/- 0.02\% Range.

Adaptors

- 16 Pin Programmable Scanner
- Regulator
- Opto Logic
- Gated Device
- Opto Coupler
- Sidac/Diac/SSOVP
- 4 Quadrant ${ }^{\text {TL }}$ Latch, IH, VT
- Low Current Deck (1 PA Resolution)

A selection of fixtures is available, including:

- TO-220/218
- TO-72
- TO-5/18
- TO-92
- TO-3/66
- Axial (small and large)
- DP-4/5
- 8 Pin DIP
- 6 Pin TO-5
- SOT-23, SOT-24, SOT-25, SOT-26
- D-PAK
- TO-252
- SOT-89
- TO-243
- D2-PAK
- SOT-223
- TO-261
- SMA
- SMB
- SMC
- MELF (MINI-MELF, MICRO-MELF)
- SO-4, SO-6, SO-8, SO-16
- SOD-123, SOD-323, SOD-80
- Custom Fixtures
(made for any device type for which a socket is commercially available)
- Blank

DIAGNOSTICS / AUTO CALIBRATION

The STI Tester provides extensive diagnostics for the Mainframe, Low Current Deck, Pin Programmable Scanner and OVP/Gated OVP adaptor. These self test diagnostics are built into the tester code, and with the supplied self test fixture, can be run at any time.

In addition, the STI Tester has an extensive auto calibration procedure that provides the user the ability to track calibration trends, verify that the DAC/ADC combination is functioning correctly, and supply calibration factors that will automatically correct the test result.

Factors in RED indicate a potential problem

1. The Auto Calibrate assumes that the DAC and ADC are within specification limits as in the Manual supplied with the test system. The values shown in the DAC/ADC Pane indicate the calibration status of the DAC/ADC combination. If any of these values appear in red, manual calibration, as specified in the STI 5000 Series Manual, is required before continuing Auto Calibration.
2. Make sure the STI 5000 Series Test System has been powered on for at least fifteen [15] minutes to insure all components within the STI 5000 Series Test System have stabilized in temperature.
3. Make sure a fixture which ties the drive and sense leads together is installed on the STI 5000 Series Tester front panel. This fixture could be the 5000 Series Test System Self-Test Fixture.
4. If Auto Calibrate factors of greater than $\mathbf{4 0 0}$ are saved, then when these factors are recalled, all of the factors will be reset to 0 .
5. Although correct readings can be made with large factors, these large factors do indicate that

Auto-Calibrate Self-Test GaN (HEMT) SiC

Enhancement/Depletion Tests and Curves
Relay Drivers
Datalog to Excel ${ }^{0}$
Curve Data to Excel ${ }^{0}$
1 Microhm RDSON Resolution
Fixture Selection
Prober/Handler Interface Option 80V Gate

1KHZ Zener Impedance

For More Information Please Contact:

Scientific Test, Inc., 809 Boaz Circle Suite 160 Wylie, TX 75098-4705
www.scitest.com
PH: 469-969-0212
Email: Sales@scitest.com or info@scitest.com

st

Sciantificit Tast, Inc., 8008 Boaz Cirdele Suite 1BO, Wylie, TX 75098 vare: 489-989-0212 | Fax: 489-988-022|| info@seitest.com | www.scitest.com

Copyrighti 02022 Scientific Test, Inc. All rights reserved. Printed in U.S.A. Scientifici Test is coveraed by U.S. and foreign patents issuad and pending. Information in this publication suparsedes that in all previously published material. Spaeifioations and priee change privileges reserved.

